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Searches for stochastic gravitational-wave backgrounds using pulsar timing arrays look for
correlations in the timing residuals induced by the background across the pulsars in the array.
The correlation signature of an isotropic, unpolarized gravitational-wave background predicted
by general relativity follows the so-called Hellings and Downs curve, which is a relatively
simple function of the angle between a pair of Earth-pulsar baselines. In this paper, we give a
pedagogical discussion of the Hellings and Downs curve for pulsar timing arrays, considering
simpler analogous scenarios involving sound and electromagnetic waves. We calculate
Hellings-and-Downs-type functions for these two scenarios and develop a framework suitable
for doing more general correlation calculations. © 2015 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4916358]

I. INTRODUCTION

A pulsar is a rapidly rotating neutron star that emits a beam
of electromagnetic radiation (usually in the form of radio
waves) from its magnetic poles." If the beam of radiation
crosses our line of sight, we see a flash of radiation, similar to
that of a lighthouse beacon. These flashes can be thought of
as ticks of a giant astronomical clock, whose regularity rivals
that of the best human-made atomic clocks. By precisely
monitoring the arrival times of the pulses, astronomers can
determine: (i) intrinsic properties of the pulsar—e.g., its rota-
tional period and whether it is spinning up or spinning down;
(ii) extrinsic properties of the pulsar—e.g., whether it is in a
binary system, and if so what are its orbital parameters; and
(iii) properties of the intervening “stuff” between us and the
pulsar—e.g., the column density of electrons in the interstel-
lar medium.* Indeed, it was the precise monitoring (for over
30 years) of the pulses from binary pulsar PSR B1913+16
that has given us the most compelling evidence to date for
the existence of gravitational waves.* The measured decrease
in the orbital period of binary pulsar PSR B1913+4-16 agrees
precisely with the predictions of general relativity for the
energy loss due to gravitational-wave emission (see Fig. 1).
This was a ?ath—breaking result, with the discovery of the bi-
nary pulsar’ being worthy of a Nobel Prize in Physics for
Joseph Taylor and Russell Hulse in 1993.

Monitoring the gravitational-wave-induced decay of a bi-
nary system, like PSR B1913+-16, is one method for detect-
ing gravitational waves. Another method is to look for the
effect of gravitational waves on the radio pulses that propa-
gate from a pulsar to a radio antenna on Earth. The basic
idea is that when a gravitational wave transits the Earth-
pulsar line of sight, it creates a perturbation in the interven-
ing spacetime metric, causing a change in the propagation
time of the radio pulses emitted by the pulsar.®™® (This is the
timing response of the Earth-pulsar baseline to a gravita-
tional wave.) One can then compare the measured and
predicted times of arrival (TOAs) of the pulses, using timing
models that take into account the various intrinsic and

635 Am. J. Phys. 83 (7), July 2015 http://aapt.org/ajp

extrinsic properties of the pulsar. Since standard timing mod-
els factor in only deterministic influences on the arrival times
of the pulses, the difference between the measured and pre-
dicted TOAs will result in a stream of timing residuals,
which encode the influence of both deterministic and sto-
chastic (i.e., random) gravitational waves as well as any
other random noise processes on the measurement.” If one
has a set of radio pulsars—a pulsar timing array (PTA)—one
can correlate the residuals across pairs of Earth-pulsar base-
lines, leveraging the common influence of a background of
gravitational waves against unwanted, uncorrelated noise.
The key property of a PTA is that the signal from a stochas-
tic gravitational-wave background will be correlated across
the baselines, while that from the other noise processes will
not. This is what makes a PTA function as a galactic-scale,
gravitational-wave detector.'”

For an isotropic, unpolarized stochastic background of
quadrupole gravitational radiation composed of the plus (+)
and cross (x) polarization modes predicted by general rela-
tivity, the expected correlated response of a pair of Earth-
pulsar baselines to the background follows the so-called
Hellings and Downs curve, named after the two authors
who first calculated it in 1983."" A plot of the Hellings and
Downs curve as a function of the angle between a pair of
baselines is shown in Fig. 2. Searches for stochastic
gravitational-wave backgrounds using pulsar timing arrays
effectively compare the measured correlations with the
expected values from the Hellings and Downs curve to deter-
mine whether or not a signal from an isotropic, unpolarized
background is present (or absent) in the data. Gravitational-
wave backgrounds predicted by alternative theories of gravity,
which have different polarization modes,'? or backgrounds
that have an anisotropic distribution of gravitational-wave
energy on the sky,'>™'> will induce different correlation signa-
tures and must be searched for accordingly. To date no detec-
tions have been made, but upper limits on the strength of the
background have been set'® that constrain certain models of
gravitational-wave backgrounds produced by the inspirals of
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Fig. 1. Decrease in the orbital period of binary pulsar PSR B1913+16
(Ref. 4). The measured data points and error bars agree with the prediction
of general relativity (parabola) for the rate of orbital decay due to
gravitational-wave emission.

binary supermassive black holes (SMBHs) in merging gal-
axies throughout the universe.

Mathematically, the Hellings and Downs curve is the sky-
averaged and polarization-averaged product of the response
of a pair of Earth-pulsar baselines to a plane wave propagat-
ing in a particular direction with either + or x polarization;
it has the analytic form

1 1 (1—cos{
AC)EZ(T)

3/1—cos( 1 —cos(
+2( 2 )“‘( 2 ) W

where { is the angle between two Earth-pulsar baselines'’
(see Fig. 3 for the Earth-pulsar baseline geometry). The
integration that one must do in order to obtain the above
expression is non-trivial enough that Hellings and Downs
originally used the symbolic manipulation computer system
MACSYMA to do the calculation.'' Tt turns out that is also
possible to evaluate the integral by hand, using contour
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Fig. 2. Hellings and Downs curve for the expected correlated response of a

pair of Earth-pulsar baselines to an isotropic, unpolarized stochastic

gravitational-wave background, plotted as a function of the angle between

the baselines, cf. Eq. (1).
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Fig. 3. Geometry for the calculation of the Hellings and Downs function for
the correlated response of a pair of Earth-pulsar baselines to an isotropic,
unpolarized stochastic gravitational-wave background. The coordinate sys-
tem is chosen so that the Earth is located at the origin and pulsar 1 is located
on the z-axis, a distance D, from the origin. Pulsar 2 is located in the xz-
plane, a distance D, from the origin. The two Earth-pulsar baselines point
along the unit vectors ; and u,. The angle between the two baselines is
denoted by {, and is given by cos{ =1, - U,. (Actually, the origin of the
coordinate system for the calculation is the fixed solar system barycenter
(SSB) and not the moving Earth. But since the distance between the Earth
and SSB (1 au) is much smaller than the typical distance to the two pulsars,
Diy ~ 1kpc =2 x 10%au, there is no practical difference between the
Earth-pulsar and SSB-pulsar baselines.)

integration for part of the integration (see, e.g., Appendix).
But for some reason, perhaps related to the difficulty of ana-
lytically evaluating the sky integral, students or beginning
researchers who are first introduced to the Hellings and
Downs curve see it as a somewhat mysterious object, inti-
mately connected to the realm of pulsar timing. Granted, the
precise analytic form in Eq. (1) is specific to the response of
a pair of Earth-pulsar baselines to an isotropic, unpolarized
stochastic gravitational-wave background, but Hellings-and-
Downs-type functions show up in any scenario where one is
interested in the dependence of the correlated response of a
pair of receivers on the geometrical configuration of the two
receivers. The geometry relating the configuration of one re-
ceiver to another might be more complicated (or simpler)
than that for the pulsar timing case, but the basic idea of cor-
relation across receivers is exactly the same.

The purpose of this paper is to emphasize this commonal-
ity and to calculate Hellings-and-Downs-type functions for
two simpler scenarios. Scenario 1 will be for a pair of
receivers constructed from omni-directional microphones
responding to an isotropic stochastic sound field. Scenario 2
will be for a pair of receivers constructed from electric
dipole antennas responding to an isotropic and unpolarized
stochastic electromagnetic field. These two scenarios
were chosen because the derivation of the corresponding
Hellings-and-Downs-type functions [cf. Egs. (27) and (48)]
and the evaluation of the necessary sky-integral and polariza-
tion averaging (for the electromagnetic-wave case) are rela-
tively simple. But the steps that one must go through to
obtain these results are identical to those for the gravitational-
wave pulsar timing Hellings and Downs function, even
though the mathematics needed to derive the relevant
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expression for the pulsar timing case [cf. Eq. (58)] is more
involved. Hopefully, after reading this paper, the reader will
understand the pulsar timing Hellings and Downs curve in its
proper context and appreciate that it is a special case of a gen-
eral correlation calculation.

The rest of the paper is organized as follows: In Sec. II, we
describe a general mathematical formalism for working with
random fields, which we will use repeatedly in Secs. III, IV,
and V. In Sec. III, we apply this formalism to calculate a
Hellings-and-Downs-type function for the case of omni-
directional microphones in an isotropic stochastic sound field.
Section IV extends the calculation to electric dipole antennas
in an isotropic and unpolarized stochastic electromagnetic
field, which requires us to deal with the polarization of the
component waves. Finally, in Sec. V, we summarize the basic
steps needed to calculate Hellings-and-Downs-type functions
in general, and then set-up up the calculation for the actual
pulsar timing Hellings and Downs curve, leaving the evalua-
tion of the final integral to the motivated reader. (We have
included details of the calculation in the Appendix, in case
the reader has difficulty completing the calculation.)

II. RANDOM FIELDS AND EXPECTATION VALUES

Probably, the most important reason for calculating
Hellings-and-Downs-type functions is to determine the correla-
tion signature of a signal buried in noisy data. The situation is
tricky when the signal is associated with a random field (e.g.,
for a stochastic gravitational-wave background), since then
one is effectively trying to detect “noise in noise.” Fortunately,
it turns out that there is a way to surmount this problem. The
key idea is that although the signal associated with a random
field is typically indistinguishable from noise in a single detec-
tor or receiving system, it is correlated between pairs of detec-
tors or receiving systems in ways that differ, in general, from
instrumental or measurement noise. In other words, by using
multiple detectors, one can leverage the common influence of
the background field against unwanted, uncorrelated noise
processes. At each instant of time, the measured correlation is
simply the product of the output of two detectors. But since
both the field and the instrumental noise are random processes,
the measured correlation will fluctuate with time as dictated by
the statistical properties of the field and noise. By averaging
the correlations over time, we obtain an estimate of the
expected value of the correlation, which we can then compare
with predicted values assuming the presence (or absence) of a
signal. The purpose of this section is to develop the mathemati-
cal machinery that will allow us to perform these statistical
correlation calculations.

In Secs. III, TV, and V, we will be working with fields
(sound, electromagnetic, and gravitational fields) that are
made up of waves propagating in all different directions.
These waves, having been produced by a large number of in-
dependent and uncorrelated sources, will have, in general,
different frequencies, amplitudes, and phases. (In the case of
electromagnetic and gravitational waves, they will also have
different polarizations.) Such a superposition of waves is
most conveniently described statistically, in terms of a
Fourier integral whose Fourier coefficients are random varia-
bles. The statistical properties of the field will then be
encoded in the statistical properties of the Fourier coeffi-
cients, which are much simpler to work with as we shall
show below, cf. Egs. (13) and (14).
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To illustrate these ideas as simply as possible, we will do
the calculations in this section for an arbitrary scalar field
®(z,x). Analogous calculations would also go through for
vector and tensor fields (e.g., electromagnetic and gravita-
tional fields) with mostly just an increase in notational com-
plexity coming from the vector and tensor nature of these
fields and their polarization properties. Scalar fields are par-
ticularly simple since they are described by a single real (or
complex) number at each point in space X, at each instant of
time ¢. Sound waves, which we will discuss in detail in Sec.
III, are an example of a scalar field. The Fourier integral for
a scalar field @(7, x) has the form

D(1,x) = Jd3kﬁ(k)ei(k"‘_‘”’>, ®(1,x) = Re[®(1,x)],

@)

with w/k = v, where v is the speed of wave propagation and
k = |K|. The relation w/k = v is required for ¢/®**=) to be a
solution of the wave equation. The Fourier coefficients A (k)
are complex-valued random variables and can be written as

A(K) = A(k)e™® = a(k) + ib(k), 3)

where A, o, a, and b are all real-valued functions of k.
The statistical properties of the field ®(z, x) are completely
determined by the joint probability distributions

pn(q)l;tlvxl;q)%tZaXZ; "‘;(Dmtmxn)a n= 1727
“)
in terms of which one can calculate the expectation values
(D(r1,x1)), (@(t1,x1)D(12,X2)), ete. o)

For example, the expectation value of the field at spatial
location x; at time #; is defined by

<(I)(l17X1)>EJ dd, (I)l([],Xl)pl(q)l,ﬁ,XI). (6)

—00

Equivalently, the expectation values can be defined in terms
of an ensemble average

D oy
(®(1,%)) EA}EI;CN;(D()(I,X), (7

where ®')(,x) denotes a particular realization of ®(z,x).
The usefulness of knowing the expectation values given in
Eq. (5) is that such knowledge is equivalent to knowing the
joint probability distributions (4) and hence the complete sta-
tistical properties of the field.'"® These expectation values in
turn are completely encoded in the expectation values of the
products of the Fourier coefficients A (k).

The simplest case, which is also the one we consider, is
for a multivariate Gaussian-distributed field, since knowl-
edge of the quadratic expectation values is sufficient to deter-
mine all higher-order moments. Without loss of generality,
we will work with the real random variables a(k) and b(k)
and assume that any non-zero constant value has been sub-
tracted from the field

(a(k)) =0, (b(k)) = 0. ®

We will also assume that the field ®(x, 1) is stationary in
time and spatially homogeneous—i.e., that the statistical
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properties of the field are unaffected by a change in either
the origin of time or the origin of spatial coordinates
t—t+1r, x—x+x. 9)

This means that the quadratic expectation values can depend
only on the difference between these coordinates

<(I)(t1,X1)(D(l2,X2)> :C(ll — 1,Xq —Xz). (10)
Such behavior follows from:

(a(k)a(K)) = %B(k) 5k —K),

(b(K)b(K')) = %B(k) Pk —K),

(a(k)b(K)) =0, (11)
with
C(ti — b, X1 — Xp) = %Jd3kB(k)
x cos[k - (X1 —X2) — @t — 1)].

12)

For readers interested in proving this last statement, write ®
as the sum ® = (® + @ )/2 and then use Egs. (2) and (3) to
expand the left-hand-side of Eq. (10) in terms of expectation
values of a(k) and b(k). Given Eq. (11), Eq. (10) then fol-
lows with C(#; — t,X; — X,) given by Eq. (12).

The physical meaning of the Dirac delta functions that
appear in the expectation values of Eq. (11) is that waves
propagating in different directions k and k and having dif-
ferent angular frequencies w = kv and ' = k'v are statisti-
cally independent of one another. In other words, the
expected correlations are non-zero only for waves traveling
in the same direction and having the same frequency. Using
Eqgs. (8) and (11), it is also straightforward to show that the
complex Fourier coefficients A (k) = a(k) + ib(k) satisfy

(A(k)) =0, (A'(k))=0, (13)
and that
(AAK)) =0,
(A (A (K) =0,
(AA"(K)) = B(k) 6’ (k — K. (14)

These two sets of expectation values for the Fourier coeffi-
cients A(k) are the main results of this section. The vanish-
ing of the first two expectation values in Eq. (14) implies

(@2 (1,%)) =%< (@) +0"(1x)) (D %)+ (1,%)) >
@000+ (8 (1)
HBEND (1) + (0 (00 (0) |
:%@)(r,x)&)*(t,x)), (15)
which we will use repeatedly in the following sections.
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As discussed at the start of this section, we are ultimately
interested in calculating the expected correlation (r(7)ra())
of the responses r|(t), r2(¢) of two receiving systems Ry, R
to the field @(z,x). It is this expected correlation that we can
compare against the actual measured correlation, assuming
that the other noise processes are uncorrelated across differ-
ent receiving systems. The response of the receiving
systems will be linear in the field, given by a convolution of
R, and R, with ®. Since ®(z,x) is a random field, | (¢) and
r2(t) will be random functions of time. In addition, the
expectation value (r(#;)r2(t,)) will depend only on the time
difference t; —t,, as a consequence of our assumption
regarding stationarity of the field, cf. Eq. (10). Hence, the
expected correlation (ri(f)ra(t)) will be independent of
time, and we expect to be able to estimate this correlation
by averaging together measurements made at different
instants of time:

(ri(Or(0) = Jim ]lVZ,~1(ri)r2(ti). (16)

Random processes for which this is true—those for which
time averages equal ensemble averages over different real-
izations of the field—are said to be ergodic.

In what follows we will assume that all our random proc-
esses are ergodic so that ensemble averages can be replaced
by time averages (and/or spatial averages) if desired. This
will allow us to calculate expectation values by averaging
over segments of a single realization, which is usually all
that we have in practice. Although ergodicity is often a good
assumption to make, it is important to note that not all sta-
tionary random processes are ergodic. An example'” of a sta-
tionary random process that is not ergodic is an ensemble of
constant time-series x(f) = a, where the values of a are uni-
formly distributed between —1 and 1. The ensemble average
(x(¢)) = 0 for all ¢, but the time-average of a single realiza-
tion equals the value of a for whichever time-series is drawn
from the ensemble. For simplicity of presentation in the re-
mainder of this paper, we will continue to treat the Fourier
expansion coefficients as random variables and calculate en-
semble averages of these quantities, rather than time (and/or

spatial) averages of products of the plane wave components
ei(k»x—(ut).

III. SCENARIO 1: SOUND WAVES

The first scenario we consider involves sound.
Mathematically, sound waves in air are pressure deviations (rel-
ative to atmospheric pressure) that satisfy the 3-dimensional
wave equation. If we denote the pressure deviation at time 7
and spatial location x by p(z, x), then

1 0%
2 _
Vp— g =0, (17)

where V2 denotes the Laplacian®® and ¢, denotes the speed
of sound in air (approximately 340 m/s at room temperature).
The most general solution of the 3-dimensional wave equa-
tion is a superposition of plane waves

p(t,x) = Jd3kA(k) cos(k - x — ot + o(k)), (18)
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where the wave vector k and angular frequency o are related
by w/k = ¢, in order that Eq. (17) be satisfied for each k. As
discussed in Sec. II, it will be more convenient to work with
the complex-valued solution

ﬁ(r,x)=Jd3k/§<k>e"“‘"“”’>, Ak) =A(k)e™™, (19

for which p(¢,x) is the real part. ~
For a stochastic sound field, the Fourier coefficients A (k)
are random variables. We will assume that these coefficients
satisfy Eqgs. (13) and (14), with the additional requirement
that the function B(k) be independent of direction k, which is
appropriate for a statistically isotropic sound field. (This
means there is no preferred direction of wave propagation at
any point in the field.) As we shall now show, the function
B(k) = B(k) is simply related to the power per unit frequency
in the sound field integrated over all directions. To prove this
last claim, we calculate the mean-squared pressure deviations

(P*(t,x)) :%(ﬁ(t,x)ﬁ*(t,x))

— 1 < Jd3kA~ (k) ei(k’X*(Ul)
2

X

d3k/A‘*(k/) ei(k’-xw’t)>
REIN JdSk/ <A(k)1‘i*<k/)> ei(kfk’)-xefi((ufw’)t

J d’kB(k)

|
I Y Y e N

kzdkj d*Q; B(k)
0 $?

njoo k*dkB(k). (20)
0

Thus, if we write

=
)

=
o
o
(3]

~
o

~
)
%

s

N = N = ==

s

I
N —
=
[¢]
ol

0

where the correlation function is given by

rlz(w)zRe{GziJ

- szﬁ [1_eik<xB _efikxc_"_eik(x,g 7xC)] }
52

27

The integrals of the exponentials over all directions k are of
the form fsdeQR X where x is a fixed vector. Such an
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(P*(1,x)) =rodw@, @21

0 dw
then
d(p? 2mk?
dp7) _2n B(k) 22)
do Cs
as claimed.

To determine the acoustical analogue of the pulsar timing
Hellings and Downs function, we need to calculate the
expected correlation of the responses r1(f) and r,(f) of two
receiving systems to an isotropic stochastic sound field. A sin-
gle receiving system will consist of a pair of omni-directional
(i.e., isotropic) microphones that are separated in space as
shown in Fig. 4. For simplicity, we will assume that the micro-
phones are identical and have a gain G that is independent of
frequency. The response 7 (¢) of receiving system 1, consisting
of microphones A and B, is defined to be the real part of

fl(l‘) = VA(I) — VB(I), (23)

where

VA([) :Gﬁ([7XA)7 VB(Z) :Gﬁ([aXB)' (24’)

The response of receiving system 2, consisting of micro-
phones A and C, is defined similarly,

fz(l) = VA(I) — Vc(l‘), (25)

with microphone C replacing microphone B. Note that micro-

phone A is common to both receiving systems, and that we

have taken the time of the measurement to be the same at both

microphones, which physically corresponds to running equal-

length wires from each microphone to our receiving system.
The expected value of the correlated response is then

(Valt) = Vs (0)(Va(0) = Vo) }

d3k Jd3k/ <A~(k)A~*(kl)>e—i(w—a)’)f[1 _ eik-XB] h _ e—ik’.xc]}

kB[l — e®*e][1 — e—""‘XC]}

00 ) . ) 00 d 2
kzdkB(k)J d?Q [1 — e — ekxe ok (x0)] = J do 37 F,z(w)} . (26)
SZ

0 dw

integral is most easily evaluated in a frame in which the z-
axis is directed along x. In this frame,

21 1
J d2Q, e = J de J d(cos ) kPeost
S2 0 -1
1, )
_ 2n'k_D(elkD — e *P) = Axsinc(kD), (28)
i
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@® microphone B

if
microphone C @, T T

microphone A

Fig. 4. Geometry for the calculation of the Hellings-and-Downs-type func-
tion for a pair of receivers constructed from omni-directional microphones
responding to an isotropic stochastic sound field. Receiving system 1 is con-
structed from microphones A and B, and points along the unit vector u;.
Receiving system 2 is constructed from microphones A and C, and points
along the unit vector W,. The coordinate system is chosen so that micro-
phone A, which is common to both receiving systems, is located at the ori-
gin. Microphone B is located on the z-axis, a distance Dp from the origin,
while microphone C is located in the xz-plane, a distance D from the origin.
The angle between the two receiving systems is denoted by {, and is given
by cos { =1, - U,. (Note the similarity of this figure and Fig. 3.)

where D = |x| and sinc(x) = sinx/x. Since the sinc function
rapidly approaches zero for x > 1, as shown in Fig. 5, we
can ignore the contribution from the last three integrals in
Eq. (27) provided kD > 1, or equivalently, provided
D > 1/k = ¢;/w. This condition is called the short-wave-
length approximation. For audible sound, which has frequen-
cies f =w/2n in the range ~20Hz to ~20kHz, this
condition becomes

=27m. (29)

So assuming that the individual microphones are separated
by more than this amount, we have

2(0) =Th(w) ~G*. (30)

In other words, the Hellings and Downs function for an iso-
tropic stochastic sound field is simply a constant, independ-
ent of the angle between the two receiving systems. The
expected correlation is thus

(rir) ~ G* (p?), 31

1.0

0.8} b

o
)
T
.

sinc(kD)
o
»

5 10 15 20 25 30 35 40 45 50
kD

Fig. 5. Plot of sinc(kD) versus kD.
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which is the mean power in the sound field multiplied by a
constant G~. This result is to be expected for omni-directional
microphones in an isotropic stochastic sound field.

Although this was a somewhat long calculation to obtain
an answer that, in retrospect, did not require any calculation,
the formalism developed here can be applied with rather
minor modifications to handle more complicated scenarios
as we shall see below.

IV. SCENARIO 2: ELECTROMAGNETIC WAVES

The second example we consider involves electromagnetic
waves. Similar to sound, electromagnetic waves are solutions
to a 3-dimensional wave equation but with the speed of light
c=2.998 x 10®m/s replacing the speed of sound c;:

2
V2E — ia_E =0,
2 or 32
! (32)
V’B — la_B =
c? or

The most general solution to the wave equation for the elec-
tric and magnetic fields is given by a sum of plane waves
similar to that in Eq. (2),

E("»X):Jd3k{E1(k)é1(lE)+Ez(k)é2(ﬁ)}ef<k"‘“)’>,

B(1,x) :Jd3k§ x {E1(K)é; (k) + E, (k) e, (k) Jeitkx—on
(33)

with

E(7,x) = Re[E(1,x)], B(s,x) = Re[B(1,x)], (34)

and w/k = c. In the above expressions, &, (k) (« = 1,2) are
two unit polarization vectors, orthogonal to one another and
to the direction of propagation

é,(k)-ép(k) =05, k-&y(k)=0. (35)

Note that there is freedom to rotate the polarization vectors
in the plane orthogonal to k. For simplicity, we will choose

é1(k) =cosOcos X +cosOsindy —sinfz =0,

X X - (36)

é(k)=—singxX+cospy=¢,
whenever k points in the direction given by the standard
angular coordinates (6, ¢) on the sphere

ﬁ:sin@cosd)f{—i—sin@sinqﬁy+cos02. (37

Because the receiving systems that we consider below are
constructed from electric dipole antennas, which respond
only to the electric part of the field, we will ignore the mag-
netic field for the remainder of this discussion.

For a stochastic field, the Fourier coefficients are
complex-valued random variables. We will assume that they
have expectation values [cf. Eqs. (13) and (14)]

*

(E4(K)) =0, (E,(k)) =0, (38)

and
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«(K)Ep(K') =0,
JREL(K)) =0,

~ %

(EL(K)Ef(K')) = Pos(k)8’ (k — K'). 39)
As before, the Dirac delta function ensures that the radiation
propagating in different directions and having different
angular frequencies are statistically independent of one
another. If the field is also statistically isotropic and unpolar-
ized, then the polarization tensor P,g(k) will be proportional

to the identity matrix J,4, with a proportionality constant in-
dependent of direction on the sky:

Pp(k) = P(k) 0,5 (40)
Similar to the case for sound, the function P(k) turns out to
be simply related to the power per unit frequency in the elec-
tric field when summed over both polarization modes and

integrated over all directions. To see this, we calculate
mean-squared electric field

1~ ~
(B (1,%)) =5 (B(x) - B (1)
1 ~ Ay ~ - (K X0
=_ < Jd3k E“(k) éy(k) el(k»xfwt) . Jd3k/ Z Eﬁ(k/) é[;(k,) e,,(k X—0 ,)>
2
o=1,2 p=1,2
1 - - N N ) ,
= —Jd3k Jd3k’ (E,E(K))&, (k) - &5(K) ehkxgilome
2 a=12 f=12
! S > (R
:—Jd3kP(k) > ek &,(k) :4nJ K2dk P (k) :J dop 1) , (41)
2 o=1,2 0 0 dw
for which 5 P ~ P
VA/([) =up- E(I, XA), Vc([) =up - E(I, Xc) (46)
2 2 ~ -
% _ Ak P(k) (42)  Note that Vu(r) differs from V,(r) since the dipole
) c

as claimed. Note that this has the same form as that for sound
[Eq. (22)], with the speed of light ¢ replacing the speed of
sound cy, and the extra factor of two coming from the sum-
mation over the two (assumed statistically equivalent) polar-
ization modes for the electromagnetic field.

To determine the electromagnetic analogue of the pulsar
timing Hellings and Downs function, we need to calculate
the expected correlation of the responses r(7) and r(r) of
two receiving systems to an isotropic, unpolarized stochas-
tic electromagnetic field. A single receiving system will
consist of a pair of electric dipole antennas that are sepa-
rated in space as shown in Fig. 6. For simplicity, we will
assume that the electric dipole antennas are identical and
short relative to the wavelengths that make up the electric
field. The response r;(¢) of receiving system 1, consisting
of electric dipole antennas A and B, is defined to be the real
part of

Fi(t) =Va(t) = Va(1), (43)
where
VA(I) =u 'E(I,XA), VB(I) = 'E(Z,XB). 44)

The response 15 (¢) of receiving system 2, consisting of elec-
tric dipole antennas A" and C, is defined similarly as

Fa(t) = Va(t) = Vel(o), (45)
where
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antenna for A’ points along u,, while that for A points
along .

antenna B

antenna A

Fig. 6. Geometry for the calculation of the Hellings-and-Downs-type func-
tion for a pair of receivers constructed from electric dipole antennas
responding to an isotropic, unpolarized stochastic electromagnetic field.
Receiving system 1 is constructed from dipole antennas A and B, which are
both directed along i, which points from A to B. Receiving system 2 is con-
structed from dipole antennas A’ and C, which are both directed along s,
which points from A’ to C. The coordinate system is chosen so that the two
dipole antennas A and A’ are located at the origin. Dipole antenna B is
located on the z-axis, a distance Dy from the origin, while dipole antenna C
is located in the xz-plane, a distance D¢ from the origin. The angle between
the two receiving systems is denoted by { and is given by cos{ =1 - U,.
(Again, note the similarity of this figure and Fig. 3.)
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The expected value of the correlated response is then

(D) = SRe{ {7 (073(1) )
= Re{((Va(0) = V() (V3u(0) ~ Vi)
71 e 31,/ r~ -
2R{ Jdk o= IZﬁZIZE Eﬁ

>}

{ kP Y ) @)1 el }}
a=1,2
{ kzdkP<k>J o > (- ,(k) (8; - &,(k))[1 — &)1 ]}
0 5 a=12
d(E?)
L do 12 1)
where
1 . . .
I'z(w) =Re —J do; (ii; - €,(k)) (dy - &,(K))[1 — e®xe][] — o=kxc] 48)
8n s2 —_l2
4 1 )
If we ignore the contribution of the integrals involving e**s, (rir) ~ 3608 L(ET). (53)

e~xc and ™ (s=Xc) assuming as we did for sound that we
are working in the short-wavelength approximation, then

[ ()~ J o > (e,

=12
which is the sky-averaged and polarization-averaged product
of the inner products of u; and U, with the polarization vec-
tors €,(Kk).

The above integral for the correlation function I'y>(w) can
easily be evaluated in the coordinate system shown in Fig. 6.
In these coordinates, t; =Z and u, = sin{X + cos {z.
Using the expressions for the polarization vectors given in
Eq. (36), it follows that

N (ds-6,(k),  (49)

i - & (k) = —sin97
i) - & (k) =
- ealk) 0
U, - € ( ) = 1nCcochos¢fcosCsm9
U, - & (k) = —sin{sin¢,
for which
L[, ) e
(o) ~ ngd Q agz(u 2 ea(k))
1 271 1
= —J d¢ J d(cos 0) (—sin 0)
87 Jo —1
X (sin{ cos 0 cos ¢ — cos {sin0)
1 ! 1
=—COSCJ dx (1 —x%) ==cos{. (51)
4 1 3
Thus,
1
71(0) =Th(w) ~ gcosé (52)
and
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So the Hellings and Downs function for an isotropic, unpolar-
ized stochastic electromagnetic field is simply proportional to
the cosine of the angle between the two receiving systems.

V. SUMMARY AND DISCUSSION

In Secs. I and IV, we calculated Hellings-and-Downs-type
functions y({) for two simple scenarios: (i) omni-directional
microphones in an isotropic stochastic sound field, and (ii)
electric dipole antennas in an isotropic, unpolarized stochastic
electromagnetic field. The result for sound was trivial,
%({) = const., and in retrospect did not even require a calcula-
tion. The result for the electromagnetic case was slightly more
complicated, %({) = $cos({), as we had to take account of the
polarization of the electromagnetic waves as well as the direc-
tion of the electric dipole antennas. But the basic steps that we
went through to obtain the results were the same in both cases,
and, in fact, can be abstracted to work for receivers in a general
field, which we will denote here by ®(z,x):*'

(1) Write down the most general expression for the field in
terms of a Fourier expansion. Let the Fourier coefficients
be random variables whose expectation values encode
the statistical properties of the field—e.g., isotropic,
unpolarized, etc.

(2) Using the expectation values of the Fourier coefficients,
calculate (®*(z,x)). Use this expression to determine
how the power in the field is distributed as a function of
frequency

@) - |

0

o]

dw@.

s (54)

(3) Write down the response /() of receiver [ to the field
®(z,x). For a linear receiving system, the response will
take the form of a convolution
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F1() = (Ry + D) (1) = Jdr Jd3yR1(r,y)<D(t —
(55)

For the simple examples we considered in Secs. III and
IV, R;(t,y) was proportional to a sum of a product of
delta functions like 6(7)3°(y) but that need not be the
case in general.

(4) Using the expectation values of the Fourier coefficients,
calculate the expected value of the correlated response
(r1(¢)r2(1)) for any pair of receivers. Use this expression
to determine the correlation function I'j; () defined by

00 2
<l‘1 (l)r2<l)> = J do dqu) > Flg(w) . (56)
0 w
(5) For fixed frequency , the correlation I'j;(w) is, by defi-
nition, the value of the Hellings and Downs function
evaluated for the relative configuration of the two receiv-
ing systems. For example,

2(0) =Tz (w) (57)

for the simple examples that we considered in Secs. III
and IV, where ( is the angle between the two receiving
systems relative to an origin defined by the common
microphone A for sound, or the co-located dipole anten-
nas A and A’ for the electromagnetic field. For more
complicated receivers, such as ground-based laser inter-
ferometers like LIGO, Virgo, etc., y will be a function of
several variables; the separation vector between the ver-
tices of the two interferometers s = X; — X,, as well as
the unit vectors i, v, and iy, V,, which point along the
arms of the two interferometers.
The above five steps are generic and will work for any scenario.
We conclude this paper by stating without proof the
expression for the actual gravitational-wave pulsar timing
Hellings and Downs function

1 2 1/ 0, ®0; ) N
0= | oo 35 () e

o=-4,x
1/ 10, @0, .\
X = —F5—— :E»(k), 58
2(1+k'ﬁ2) * (58)
where
3 3
0 @u;: €, (k EZZu“u,ewb I1={1,2} (59)
a=1 b=1
and
ekK)=020-¢2¢,
H)=0o0-¢a¢ (60)
exk)=02¢+0d®0

i, @1, : e, (k) =sin®0,

are the two gravitational-wave polarization tensors. Here i,
and U, are unit vectors pointing from Earth to the two pul-
sars, and ( is the angle between 1 and 1, as shown in Fig. 3.
The extra factors of 1/(1+k-1;) and 1/(1 4k -1i,) that
appear in Eq. (58)—as compared to the analogous electro-
magnetic expression in Eq. (49)—come from the calculation
of the timing residual response of an Earth-pulsar baseline to
the gravitational-wave field, when integrating the metric per-
turbations /,(t,x) along the photon world-line from the pul-
sar to Earth. This is a non-trivial example of the convolution
described in Step 3 above, and the mathematical details
needed to derive the precise form of Eq. (58) are outside the
scope of this paper. (Readers who are interested in seeing a
derivation of Eq. (58) are encouraged to consult Ref. 22.) But
all in all, the pulsar timing Hellings and Downs function is
just a sky-averaged and polarization-averaged product of two
geometrical quantities, as is the case for any Hellings-and-
Downs-type function. It is now just a matter of doing the inte-
grations, which we leave to the motivated reader.”® The final
result should be proportional to Eq. (1), which has been nor-
malized by an overall multiplicative factor of 3.
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APPENDIX A: DETAILS OF THE CALCULATION
FOR THE PULSAR TIMING HELLINGS AND
DOWNS FUNCTION

Here we fill in some of the details of the integration of the
pulsar timing Hellings and Downs function given in Eq.
(58), following the hints given in endnote 23. The approach
that we follow is based on similar presentations found in the
appendices of Refs. 22, 13, and 15.

In the coordinate system shown in Fig. 3, the two pulsars are
located in directions iy = Z and w, = sin { X + cos { Z, so that

=

-u; =cosl,

ﬁ~ﬁ2:cochos@—l—sinCSianosqﬁ. (A1)
Using the definition of the gravitational-wave polarization
tensors €,(k) given in Eq. (60), with 0, ¢ defined as in Eq.
(36), it is fairly easy to show that

(k)
i, @i, e, (k) =0,
) @y : e+(lE) (sin { cos 0 cos ¢p — cos { sin 0) — sin’{sin¢
U ® U, : €y (l;) = —2(sin{cos H cos ¢ — cos {sin B) sin { sin ¢ (A2)
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The quantities

. 1/ 410 N
F“(k):—<f):e,(k), 1={1,2}, oa={+,x}, A3
which appear in Eq. (58) are then given by
. 1
Ff(k) = 5(1 —cosf),
Frk) =0,
1 2sin*{sin’¢ (A4)
Fik)=~|(1—- 0 — sin{sin 0 —
2( ) 2[( cos ¢ cos sinCsin 0 cos ¢) 1+ cos{cosO+sinsinfcos¢ |’
PR) = — 1 sin?( cos 0'sin(2¢) — sin(2{)sin 0 sin ¢
T2 1 + cos{cos 0 + sin { sin 0 cos ¢ ’
where for F; (ﬁ) we cancelled the denominator with part of the numerator to isolate the complicated ¢-dependence.
In this reference frame, the pulsar timing Hellings and Downs function (58) simplifies to
1 . . 1
2(0) = —J d?Q FFRFF (k) = — | de(1 —x)I(x,0), (A5)
81 ) 167
where x = cos 0 and
21 21 )
N 1 ) 2 sin”“{ sin“¢
I(x,() = J dp Fi (k) = —J do {(1 —xcos{ — V1 —x2sin{cos q5) - (A6)
(. 0) 0 : 2Jo 1 +xcos{+ V1 —x%sin{cos ¢
The first part of the integral for /(x, {) is simple:
1 21
I (x,{) = EJ d¢ (1 —xcos({ —V1—x? sinCcosd)) =n(1 —xcos{). (A7)
0
The second part can be evaluated using contour integration24 where
as follows. Making the usual substitutions z = e’d’, cos ¢ — —
=1(z+2z7"), etc., we obtain . =— 1F cos{ (ﬂ)7 z El ) (A1)
1*xcos{/ \1*xx z4

L(x,{) = —sin*{ Jzn do sin’¢
B 0 1+xcos{++V1—x%sin{cos¢
= —sinzcj{i dzf(z), (A8)
c
where
ETRY
F2) = i(z2—1) (A9)

22|4z(1 +xcos) +2v1 —x2sin{ (22 + 1)]

and C is the unit circle in the complex z-plane. The denomi-
nator of f{z) can be factored using the quadratic formula for
the expression in square brackets

4z(1 +xcosl) +2V1 — x2sin{(* + 1)

=2V1 —x%sin{(z—z4)(z —z_), (A10)
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In the above expression, the top signs correspond to the
region —cos{ < x < 1 and the bottom signs to the region
—1 < x < —cos{. One can show that for both of these
regions z; is inside the unit circle C (i.e., |z4| < 1) and
hence contributes to the contour integral, while z_ is out-
side the unit circle and does not contribute. In addition,
z =0 lies inside the unit circle and contributes to the con-
tour integral as a pole of order two. Using the residue
theorem?*

if(z) dz = 2niZRes(f, z), (A12)
with
Res(f21) = Jim { (2= 2.}/ (0} = o
Res(0)=tim{ £ [27(]} S an
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it follows that

2n
/0% = ey e
for which
1(x,0) = n(1 — xcos?) oy ces) (A15)
(1=x)
It is now a relatively simple matter to the evaluate the integral over x to obtain y({):
1 1 —cos 1 (1 —)C)
S 1—x)(1 - —2(1 —2(1— Y
10 = { || ar =00 - xeost) <2014 eos) | a2t eost [ a0
! {2+ 2cosC 2(1 +cos{)(1 —cos{) —2(1 — cos{) {ZIn(#> -1+ cosC)] }
16 1 —cos{
I 1 1 —cos(
=3 +ﬁcosc+ (1 —cos C)ln<?>
11 (1—cos( 1/1—cos( 1 —cos{
)

Note that the above expression differs from Eq. (1) by an
overall normalization factor of 1/3. The normalization used
in Eq. (1) was chosen so that for zero angular separation,
%(0)|;—o = 1/2 for two distinct pulsars. This is purely an aes-
thetic choice, which does not change the angular dependence
(i.e., shape) of the Hellings and Downs curve.
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