Home Page | Overview | Site Map | Index | Appendix | Illustration | About | Contact | Update | FAQ |
![]() |
This idea can be applied to the theory of cosmic inflation or to account for the mass of elementary particles in the Standard model via interaction with the Higgs boson as shown below. Let us start by examine how such unstable symmetry can arise mathematically. Considering the Lagrangian for a scalar field with the potential V: L = (1/2) ![]() ![]() ![]() ![]() ![]() ![]() ![]() where V( ![]() ![]() ![]() ![]() |
Figure 06f Scalar Field |
If m2 > 0, the system has real mass, the potential exhibits a minimum at the origin, where ![]() ![]() |
![]() |
The formulation can be generalized to complex scalar field with two independent components corresponding to positively and negatively charged fields. In a slightly different notations, the Lagrangian for a complex scalar field has the form similar to Eq.(46): L = ( ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() where V( ![]() ![]() ![]() ![]() ![]() ![]() |
Figure 06g Complex Scalar Field [view large image] |
![]() |
As each term in the Lagrangian of the Standard model represents a different process, Figure 06h shows the various Higgs interactions in the form of Feynman diagrams. Diagram (a) represents a fermion emitting or absorbing a Higgs particle. Diagram (b) shows the corresponding process for the gauge bosons. They can also interact simultaneously with two Higgs, as shown in (c), which also represents a gauge boson scattering a Higgs particle. The Higgs also interacts with itself, as shown in diagrams (d) and (e), which are related to the shape of the scalar potential (Figure 06g). Diagram (f) depicts an electron acquiring its mass. |
Figure 06h Higgs Field Interaction |
![]() |
By taking into account the higher term of the SM (Standard Model) perturbation series, the vacuum potential of the Higgs field V is in the form :
![]() |
Figure 06i Stability of the Universe [view large image] |
and the sum is over all SM particles acquiring a Higgs-dependent mass Mi. The precise form of V1 is not important in the present context, it just shows that the Higgs potential also depends on the particles it acts upon. Furthermore, only the heaviest top quark in the sum is retained in the following consideration. |